
Structural Vector Autoregression demo
This script illustrates how to work with Structural Vector Autoregression (SVAR) models with a simple
example.

Results are produced using the VAR toolbox designed by Ambrogio Cesa-Bianchi, available at https://
sites.google.com/site/ambropo/MatlabCodes.
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Model
The model is a structural VAR with three variables (Inflation, Output and Federal Funds Rate) and four lags.

where variables are ranked in the following order

and with the following imposed restriction on the structural matrix A

Data
In this example, we estimate the model parameters on US data.

To construct the relevant variables, we use the following series from FRED (https://
research.stlouisfed.org/fred2/):

• Consumer Price Index for All Urban Consumers: All Items (CPIAUCSL)
• Federal Funds Rate (FEDFUNDS)
• Civilian Noninstitutional Population (CNP16OV)
• Gross Domestic Product (GDP)
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• Gross Domestic Product: Implicit Price Deflator (GDPDEF)

Here we use the Datafeed toolbox to fetch data from the FRED data server.

if contains(matlabpath,['toolbox' filesep 'datafeed'])
    % Fetches data from FRED and saves it in raw_data.mat
    try
        % Create connection with FRED server
        c = fred('https://research.stlouisfed.org/fred2/');
        
        % Sample period
        start_date  = '01/01/1960';
        end_date    = '01/01/2019';
        
        % Fetch data
        rawdata.cpi         = fetch(c,  'CPIAUCSL'    ,start_date,end_date);
        rawdata.ffr         = fetch(c,  'FEDFUNDS'    ,start_date,end_date);
        rawdata.pop         = fetch(c,  'CNP16OV'     ,start_date,end_date);
        rawdata.gdp         = fetch(c,  'GDP'         ,start_date,end_date);
        rawdata.gdp_defl    = fetch(c,  'GDPDEF'      ,start_date,end_date);
        
        % Save data
        save raw_data rawdata start_date end_date
        
        % Close connection with server
        close(c); clearvars c
        
        disp('Successfully fetched data!')
        fetched = true;
    catch
        disp('Unable to download data from FRED!')
        fetched = false;
    end
else
    disp('Could not find the datafeed toolbox.')
    fetched = false;
end

Successfully fetched data!

If the toolbox is not available in your MATLAB license or fetching data fails, it loads previously dowloaded
data (raw_data.mat)

if ~fetched
    % Load raw data from .mat file
    load raw_data.mat
    disp('Loading previously downloaded data ...')
end

Data preparation
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Downloaded data has to be further manipulated before it can be used in our model.

In particular, we have to:

1. Convert monthly data (CPI, FEDFUNDS and CNP16OV) into quarterly data
2. Create a series for Inflation from the CPI index
3. Construct Real GDP per capita
4. Remove the trend component to get cyclical fluctuations of GDP

Monthly data to quarterly data

% Sample period
quarters = rawdata.gdp.Data(:,1);
 
% Quarters to months legend:
% Q1 --> 01-Jan
% Q2 --> 01-Apr
% Q3 --> 01-Jul
% Q4 --> 01-Oct
% To see dates, datestr(quarters)
 
% Monthly to quarterly data
rawdata.cpi.Data = rawdata.cpi.Data(ismember(rawdata.cpi.Data(:,1),quarters),:);
rawdata.ffr.Data = rawdata.ffr.Data(ismember(rawdata.ffr.Data(:,1),quarters),:);
rawdata.pop.Data = rawdata.pop.Data(ismember(rawdata.pop.Data(:,1),quarters),:);

Year-on-year inflation rate

T   = length(quarters);
Pi  = zeros(T-4,1);
for t = 5:T
    Pi(t-4) = 100*(rawdata.cpi.Data(t,2) - rawdata.cpi.Data(t-4,2))/rawdata.cpi.Data(t-4,2);
end
 
% NOTE: The first four observations are lost when constructing Pi.
% Update sample period and data
quarters = quarters(5:end);
rawdata.gdp.Data        = rawdata.gdp.Data(ismember(rawdata.gdp.Data(:,1),quarters),:);
rawdata.gdp_defl.Data   = rawdata.gdp_defl.Data(ismember(rawdata.gdp_defl.Data(:,1),quarters),:);
rawdata.ffr.Data        = rawdata.ffr.Data(ismember(rawdata.ffr.Data(:,1),quarters),:);
rawdata.pop.Data        = rawdata.pop.Data(ismember(rawdata.pop.Data(:,1),quarters),:);

Real GDP per capita

% Create population index
index_date = '01-Jan-1990';
pop_index = rawdata.pop.Data(:,2) ./ rawdata.pop.Data(rawdata.pop.Data(:,1)==datenum(index_date),2);
 
% Deflate nominal GDP
gdp_real = rawdata.gdp.Data(:,2) ./ rawdata.gdp_defl.Data(:,2);
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% Divide by population index
gdp_real_cap = gdp_real ./ pop_index;

Remove trend in output

% Choose detrending option: 'log-linear' or 'HP filtering'
detrend_opt = 'HP filtering';
 
switch detrend_opt
    case 'log-linear'
        Y = detrend(100.*log(gdp_real_cap));
    case 'HP filtering'
        [~,Y] = hpfilter(100.*log(gdp_real_cap),1600);
end

Cleaned data

dates = datetime(datestr(rawdata.ffr.Data(:,1)));
R = rawdata.ffr.Data(:,2);
 
% Final data ready to be used in estimation
data = timetable(dates,Pi,Y,R,'VariableNames',{'Inflation','Output','FedFunds'});
X = [Pi Y R];

Plot data (optional)

% Select 'true' or 'false' if you want to plot data
plot_data = true;
if plot_data
    plot(dates,data.Variables)
    legend(data.Properties.VariableNames)
end
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Estimation
Now that data is ready, we can estimate the VAR using the VAR Toolbox.

First, we need to tell MATLAB where the toolbox is located:

% Add VAR toolbox to the MATLAB path (including all subfolders)
addpath(genpath('VAR_toolbox'))

Next, we need to specify some variables that determine the shape of our VAR, that is the number of
lags and whether the VAR should have a constant, a trend or both.

Mean and trends

Before estimating the VAR, you need to choose between the following options:

• const_trend = 0 --> No constant and no trend
• const_trend = 1 --> Only constant and no trend
• const_trend = 2 --> Constant and trend

This choice depends on whether your endogenous variables (Inflation, Output and Interest rate) display a
non-zero mean and a trend. Therefore, you should inspect your variables and make a choice accordingly.
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In practice, it is recommended to include both constant and trend in your estimation. If it turns out that your
time series does not have a non-zero mean nor a trend, the respective estimated parameters will be equal
(or very close) to zero.

% Choose constant and trend
const_trend = 2;
 
% Choose number of lags
nbr_lags = 4;

Finally, call the appropriate function to estimate the model and show parameters estimates:

% Estimate the VAR
[VAR, VAR_options] = VARmodel(X,nbr_lags,const_trend);
 
% Show estimated model parameters
VAR_options.vnames = data.Properties.VariableNames;
VARprint(VAR,VAR_options);

 
 
Reduced form VAR estimation:
 
               Inflation     Output   FedFunds 
c                 0.3964     0.2305     0.5102 
trend            -0.0011    -0.0007    -0.0026 
Inflation(-1)     0.9528    -0.0588    -0.0015 
Output(-1)        0.2775     1.0243     0.6967 
FedFunds(-1)      0.0881    -0.0527     0.6162 
Inflation(-2)    -0.0356     0.0757     0.0148 
Output(-2)       -0.1874     0.0413    -0.2558 
FedFunds(-2)      0.0713    -0.0060     0.1492 
Inflation(-3)     0.1342    -0.0674     0.1320 
Output(-3)       -0.0946    -0.2336    -0.1915 
FedFunds(-3)     -0.0026     0.1522     0.2315 
Inflation(-4)    -0.1431     0.0373    -0.0364 
Output(-4)        0.0965    -0.0337     0.0312 
FedFunds(-4)     -0.1396    -0.1135    -0.1190 

Impulse responses
In this section, we compute and plot the dynamic responses of endogenous variables to a structural shock.

Identification

But wait, what is a structural shock!? Remember in the slides we made an important distinction
between innovations and structural shocks. Loosely speaking, a structural shock is a sudden movement
in the error terms that we can clearly identify coming from a specific source. Conversely, innovations are
sudden movements in the error terms which might be caused by several factors.

How do we tell a structural shock from an innovation? One way is to use economic theory to impose
some restrictions on the parameters of the model. Given the restriction, we can now say that a sudden
movement in the error term is due to a movement in a particular variable.
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Remember when we introduced the model, we said that the structural matrix A was lower triangular.
This is an example of one of such restrictions. This restriction implies that only some variables are able
to contemporaneously influence the other variables. This identification scheme is called recursive or short-
run restriction.

In particular, given the ordering of the variables and the restriction on A,

we deduce that:

• The policy rate ( ) responds to contemporaneous changes to other variables
• Output ( ) responds current inflation but not interest rate
• Inflation ( ) is not contemporaneously affected by  or  and only responds to these

variables with a lag

This ordering of the variables is reasonable since we expect the central bank to immediately respond to
movements in inflation and output with changes in the policy rate.

On the other hand, since both inflation and output are assumed to not contemporaneously react to
movements in the policy rate, we can say that any sudden change in the error term of  is due to

movements in  only. That is, it is a shock to the policy rate that does not come from a reaction to
movements in other variables. This is a monetary policy shock.

Implementation

In practice, the restriction on the structural matrix A is imposed by doing a Cholesky decomposition of the

estimated variance-covariance matrix  of the residuals.

% Choose the identification scheme
VAR_options.ident = 'oir';          % 'oir' selects a recursive scheme
 
% Choose the horizon for the impulse responses
VAR_options.nsteps = 40;
 
% Apply the identification scheme and compute impulse responses
[IRF,VAR] = VARir(VAR,VAR_options);

It is usually good practice to report impulse responses along with confidence intervals.

The VAR toolbox computes a lower and an upper bound for the impulse responses via bootstrap:

1. The residuals are resampled and the model parameters are re-estimated a large number of times.
2. For each new estimate, impulse responses are computed.
3. All impulse responses are compared to identify the lower, upper and median impulse response.

% Compute confidence intervals using bootstrap methods
[IRF_lower,IRF_upper,IRF_median] = VARirband(VAR,VAR_options);
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Loop 10 / 100 draws
Loop 20 / 100 draws
Loop 30 / 100 draws
Loop 40 / 100 draws
Loop 50 / 100 draws
Loop 60 / 100 draws
Loop 70 / 100 draws
Loop 80 / 100 draws
Loop 90 / 100 draws
Loop 100 / 100 draws
-- Done!
 

Finally, we can plot the impulse responses:

% Figures related options
VAR_options.savefigs = false;
VAR_options.quality  = 0;
 
% Plot impulse response functions
VARirplot(IRF_median,VAR_options,IRF_lower,IRF_upper);

Impulse response to Inflation

Impulse response to Output

Impulse response to FedFunds
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Historical decomposition
The historical decomposition summarises the history of each endogenous variable in the light of the VAR.

It asks the following question: given the estimated model, what is the sequence of shocks that is able to
replicate the time series of Inflation, Output and Federal Funds Rate?

In other words, the historical decomposition tells us what portion of the deviation of the endogenous variables
from their unconditional mean is due to the each shock.

% Compute historical decomposition
HistDecomp = VARhd(VAR);
 
% Plot historical decomposition
VARhdplot(HistDecomp,VAR_options);

Historical decomposition of Inflation

Historical decomposition of Output

9



Historical decomposition of FedFunds

Forecast Error Variance decomposition
The variance decomposition of the forecast errors tells us the contribution of each shock to the total
variability of each endogenous variable.

It is used to understand how much of the variability of each variable is explained by a given shock. The
dynamic nature of the VAR model also implies that the contribution of each shock may change over time, for
instance one shock may be important in the first few periods but less important in the long-run.

% Compute forecast error variance decomposition
[FEVD,VAR] = VARfevd(VAR,VAR_options);
 
% Compute confidence interval via bootstrap
[FEVDINF,FEVDSUP,FEVDMED] = VARfevdband(VAR,VAR_options);

Loop 10 / 100 draws
Loop 20 / 100 draws
Loop 30 / 100 draws
Loop 40 / 100 draws
Loop 50 / 100 draws
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Loop 60 / 100 draws
Loop 70 / 100 draws
Loop 80 / 100 draws
Loop 90 / 100 draws
Loop 100 / 100 draws
-- Done!
 

% Plot
VARfevdplot(FEVDMED,VAR_options,FEVDINF,FEVDSUP);

Variance decomposition of Inflation

Variance decomposition of Output

Variance decomposition of FedFunds
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