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Introduction

The goal of applied macroeconomics is to design models useful for
policy analysis and forecasting.

The main methods are:

• Time series econometrics, e.g. Vector Autoregressions (VAR)
• Dynamic stochastic general equilibrium (DSGE) models,
e.g. Real Business Cycles (RBC) and New Keynesian (NK) models

Today:

• Vector Autoregression (VAR) and Structural Vector
Autoregression (SVAR) models

• VAR toolbox in MATLAB
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Trend and cycles



Trend and cycles

Most macroeconomic time series exhibit a trend.

For instance, Gross Domestic Product (GDP):
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Figure 1: Real GDP per capita.
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Trend and cycles

In applied macro, we are often interested in cyclical fluctuations of
GDP.

To obtain the cyclical component of the time series we have two
options:

• Estimate and remove the time trend.
• Filter out the lower frequency components.
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Log-linear trend

We assume that the variable of interest grows linearly with time:

yt = c + δt + εt

Steps:

1. Estimate the δ coefficient to get the trend.
2. Remove the trend component to obtain the cycle.
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Log-linear trend

1. Estimate the δ coefficient to get the trend:
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Figure 2: Log real GDP per capita with linear trend.
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Log-linear trend

2. Remove the trend component to obtain the cycle:
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Figure 3: % deviations of GDP per capita around linear trend.
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Filtering

The time series moves at different frequencies, higher frequencies
and lower frequencies.

We use the Hodrick–Prescott filter to separate the higher and lower
frequencies of the time series

Steps:

1. Use the Hodrick–Prescott filter to obtain the ”slow moving”
component.

2. Remove the lower frequency to get the cycle.
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Filtering

1. Use the Hodrick–Prescott filter to obtain the ”slow moving”
component:
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Figure 4: Log real GDP per capita with HP filtered trend.
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Filtering

2. Remove the lower frequency to get the cycle:
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Figure 5: HP filtered real GDP per capita.
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Comparison: Linear trend vs HP filter

Both approaches can successfully identify recessions:

Figure 6: Linear de-trended vs HP filtered with NBER recessions.
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Vector Autoregression models



Vector Autoregressions (VARs)

Vector Autoregressions are the multivariate equivalent of an
Autoregressive (AR) process.

Recall an AR process of order one (AR1). This process is a sequence
{yt}∞t=0 defined by:

yt = ρyt−1 + et (1)

where:

• Initial value y0 is known
• et is an i.i.d. innovation that follows et ∼ N(0,σ2e)

Stability condition: |ρ| < 1
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Vector Autoregressions (VARs)

A VAR is a model with n variables with k lags.

Example: two variables {y1, y2}, one lag

y1,t = φ11y1,t−1 + φ12y2,t−1 + e1,t
y2,t = φ21y1,t−1 + φ22y2,t−1 + e2,t

Group elements as follows

Yt =

(
y1,t
y2,t

)
Φ =

(
φ11 φ12

φ21 φ22

)
et =

(
e1,t
e2,t

)

and rewrite the model in matrix form as

Yt = ΦYt−1 + et (2)
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Vector Autoregressions (VARs)

VAR models of this form

Yt = ΦYt−1 + et (3)

are often referred to as reduced-form models:

• Parameters Φ do not have any intrinsic economic meaning.
• Innovations et do not have an economic or structural
interpretation.

Reduced-form models are useful for forecasting:

• One-period ahead: Et [Yt+1] = ΦEt [Yt] + Et [et+1] = ΦYt
• Two-periods ahead: Et [Yt+2] = ΦEt [Yt+1] = ΦΦYt
• k-periods ahead: Et [Yt+k] = Φ · · ·ΦYt = ΦkYt
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Identification and causality



Innovations and dynamic responses

VAR models are useful to predict the dynamic response of a set of
macroeconomic variables to a sudden change in one of the variables.

Thus, we compute Impulse Responses Functions (IRFs):

1. The innovation e1,t increases by one percent in period, t = 1.
2. The variable y1,t immediately responds in the first period, t = 1.
3. Variables y1,t and y2,t respond in the subsequent periods, t > 1.

This gives us a clear picture of the dynamic response of variables ...

... but what caused the innovation e1,t to jump in the first place?
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Structural shocks and contemporaneous responses

If we want some economic insight on the response of variables, we
need to identify structural shocks εi,t.

• A structural shock εi,t is likely to impact more than one variable
yi,t contemporaneously!

• The effect of the shock will show up in the residuals ei,t but we
cannot say if this is coming from ε1,t or ε2,t

This is why movements in the residuals ei,t are without economic
meaning:

• A movement in e1,t is not necessarily due to a shock to the y1,t
variable

• It might be the contemporaneous by-product of a shock to y2,t
or to both variables y1,t and y2,t

To resolve this issue we need to impose some structure on the
model.
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Structural Vector Autoregressions (SVARs)

The standard VAR does not allow for contemporaneous interactions.
SVARs augment VARs model by introducing them.

Model becomes:

y1,t = a12y2,t + b11y1,t−1 + b12y2,t−1 + c1ε1,t
y2,t = a21y1,t + b21y1,t−1 + b22y2,t−1 + c2ε2,t

which can be written as

AYt = BYt−1 + Cεt (4)

where

A =

(
1 −a12

−a21 1

)
, C =

(
c1 0
0 c2

)
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SVARs: reduced form and identification problems

Note the SVAR can be written in reduced-form:

Yt = ΦYt−1 + et (5)

where

Φ = A−1B (6)
et = A−1Cεt (7)

No problem estimating Φ from (5), but impossible to disentangle (6)
and (7) to recover estimates structural matrices A, B and C.

In words, you cannot tell if a movement in Yt is caused by ε1,t or ε2,t
because what you ”observe” is only a movement in et.

Therefore, we must impose further structure to fully identify the
model.
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Identification of SVARs

Common (and easiest) approach is to assume a recursive structure:

• y1,t only affected by ε1,t ,
• y2,t only affected by ε1,t and ε2,t ,
• y3,t only affected by ε1,t , ε2,t and ε3,t ,
• And so on.

This translates into saying that the last variable can be
contemporaneously influenced by all variables, while the first one
only by itself.

Usually this is justified by assuming that some variables move faster
than others.
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Example

Structural VAR with three variables:

Yt =

 Πt

GDPt
FFRt

 =

 inflationt
outputt

policyratet

 (8)

and four lags. Thus model is:

AYt =
4∑
s=1

BsYt−s + Cεt (9)

where the imposed form of the structural matrix A is:

A =

 a11 0 0
a21 a22 0
a31 a32 a33

 (10)
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Example

The restrictions on the structural matrix A and the ordering of the
variables

Yt =

 Πt

GDPt
FFRt

 , A =

 a11 0 0
a21 a22 0
a31 a32 a33

 (8), (10)

imply that:

• The policy rate (FFRt) responds to contemporaneous changes to
other variables

• Output (GDPt) responds current inflation but not interest rate
• Inflation (Πt) is not contemporaneously affected by GDPt or FFRt
and only responds to these variables with a lag
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Example: practical implementation

We use a VAR toolbox designed by Ambrogio Cesa-Bianchi.

The Live Script SVAR_demo.mlx:

1. Downloads data from Federal Reserve data server (FRED)
2. Cleans raw data and creates final time–series for estimation
3. Estimates the model parameters of the reduced–form VAR
4. Applies a recursive identification scheme (short–run restriction)
via a Cholesky decomposition

5. Plots impulse responses with confidence intervals
6. Computes and plots historical decomposition and forecast error
variance decomposition
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Material

You can have access to the material in many ways.

Replication codes and slides:

1. Direct download (zip version)
2. Github  repository (view)
3. If you are a user, clone the repository with

git clone --recurse-submodules https://github.com/LRondina/SVARs-Intro

Official version of the toolkit: VAR Toolbox 2.0

Data: https://fred.stlouisfed.org/
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https://lrondina.github.io/downloads/SVARs-Intro.zip
https://github.com/LRondina/SVARs-Intro
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Applications and Further Reading

Example questions:

• What is the response of output to monetary policy shock?
• What is the response of labour supply to a productivity shock?
• How do oil price shocks affect U.K. economy?

Some further reading:

• ”Vector autoregressions” by Stock J. H., Watson M. W., Journal of
Economic Perspectives (2001)

• ”Macroeconomic Shocks and Their Propagation” by Ramey V. A.,
Handbook of Macroeconomics Vol 2, (2016)

• ”Identification in Macroeconomics” by Nakamura E., Steinsson J.,
Journal of Economic Perspectives (2018)
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